C–H Methylation of Heteroarenes Inspired by Radical SAM Methyl Transferase

نویسندگان

  • Jinghan Gui
  • Qianghui Zhou
  • Chung-Mao Pan
  • Yuki Yabe
  • Aaron C. Burns
  • Michael R. Collins
  • Martha A. Ornelas
  • Yoshihiro Ishihara
  • Phil S. Baran
چکیده

A practical C-H functionalization method for the methylation of heteroarenes is presented. Inspiration from Nature's methylating agent, S-adenosylmethionine (SAM), allowed for the design and development of zinc bis(phenylsulfonylmethanesulfinate), or PSMS. The action of PSMS on a heteroarene generates a (phenylsulfonyl)methylated intermediate that can be easily separated from unreacted starting material. This intermediate can then be desulfonylated to the methylated product or elaborated to a deuteriomethylated product, and can divergently access medicinally important motifs. This mild, operationally simple protocol that can be conducted in open air at room temperature is compatible with sensitive functional groups for the late-stage functionalization of pharmacologically relevant substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA methylation by radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift.

RlmN and Cfr are Radical SAM enzymes that modify a single adenosine nucleotide--A2503--in 23S ribosomal RNA. This nucleotide is positioned within the peptidyl transferase center of the ribosome, which is a target of numerous antibiotics. An unusual feature of these enzymes is their ability to carry out methylation of amidine carbons of the adenosine substrate. To gain insight into the mechanism...

متن کامل

Identification of a unique radical S-adenosylmethionine methylase likely involved in methanopterin biosynthesis in Methanocaldococcus jannaschii.

Methanopterin (MPT) and its analogs are coenzymes required for methanogenesis and methylotrophy in specialized microorganisms. The methyl groups at C-7 and C-9 of the pterin ring distinguish MPT from all other pterin-containing natural products. However, the enzyme(s) responsible for the addition of these methyl groups has yet to be identified. Here we demonstrate that a putative radical S-aden...

متن کامل

Radical-Mediated Enzymatic Methylation: A Tale of Two SAMS

Methylation is an essential and ubiquitous reaction that plays an important role in a wide range of biological processes. Most biological methylations use S-adenosylmethionine (SAM) as the methyl donor and proceed via an S(N)2 displacement mechanism. However, researchers have discovered an increasing number of methylations that involve radical chemistry. The enzymes known to catalyze these reac...

متن کامل

DNA Methylation Molecular Biology and Biological Significance

Major techniques to study DNA methylation 11 W. Zacharias Methylation of cytosine influences the DNA structure 27 M. Noy er-Weidner and T. A. Trautner Methylation of DNA in prokaryotes 39 H. Leonhardt and T. H. Bestor Structure, function and regulation of mammalian DNA methyl-transferase 109 Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA 145 F. Antequera and A....

متن کامل

Comparison of the Efficacies of Chloromethane, Methionine, and S-Adenosylmethionine as Methyl Precursors in the Biosynthesis of Veratryl Alcohol and Related Compounds in Phanerochaete chrysosporium.

The effect on veratryl alcohol production of supplementing cultures of the lignin-degrading fungus Phanerochaete chrysosporium with different methyl-(sup2)H(inf3)-labelled methyl precursors has been investigated. Both chloromethane (CH(inf3)Cl) and l-methionine caused earlier initiation of veratryl alcohol biosynthesis, but S-adenosyl-l-methionine (SAM) retarded the formation of the compound. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014